[1] |
决明子 . DeepSeek 正在中文互联网建造“幻觉长城”[EB/OL]. (2025-02-07)[2025-04-25]. https://mp.weixin.qq.com/s/aMy99RcCq62D9JvTgTUi7A.
|
[2] |
Kalai A T,Vempala S S. Calibrated language models must hallucinate[C]. Proceedings of the 56th Annual ACM Symposium on Theory of Computing,2024:160-171.
|
[3] |
Vectara. DeepSeek-R1 hallucinates more than DeepSeekV3[EB/OL]. (2025-01-30) [2025-04-25],https://www.vectara.com/blog/deepseek-r1-hallucinates-morethan-deepseek-v3.
|
[4] |
-42.
|
[4] |
Nicola J. AI hallucinations can’t be stopped—but these techniques can limit their damage[J].Nature. 2025,637(8047):778-780.
|
[5] |
张铮,刘晨旭 . 大模型幻觉:人机传播中的认知风险与共治可能 [J]. 苏州大学学报(哲学社会科学版),2024,45 (5):171-180.
|
[6] |
经羽伦,张殿元 . 生成式 AI 幻象的制造逻辑及其超真实建构的文化后果 [J]. 山东师范大学学报(社会科学版),2024,69(5):113-126.
|
[7] |
张新生,王润周,马玉龙 . AIGC 背景下虚假信息治理挑战、机会与策略研究 [J/OL]. 情报科学,1-23[2025-06-05].http://kns.cnki.net/kcms/detail/22.1264.G2.20241111.1002.024.html.
|
[8] |
Chakraborty N,Ornik M,Driggs-Campbell K. Hallucination detection in foundation models for decisionmaking: A flexible definition and review of the state of the art[J]. ACM Computing Surveys,2025,52(7):1-35.
|
[9] |
Wu J,Gan W,Chen Z,et al. Multimodal large language models:A survey[C]. 2023 IEEE International Conference on Big Data. IEEE,2023:2247-2256.
|
[10] |
Xi Z,Chen W,Guo X,et al. The rise and potential of large language model based agents: A survey[J]. Science China Information Sciences,2025,68(2):101-121.
|
[11] |
Gong R,Huang Q,Ma X,et al. MindAgent:Emergent Gaming Interaction[C]. Findings of the Association for Computational Linguistics:NAACL 2024,2024:3154-3183.
|
[12] |
Zhang J,Huang J,Jin S,Lu S. Vision-language models for vision tasks:A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(8):5625-5644.
|
[13] |
El-Mallakh R S,Walker K L. Hallucinations,psuedohallucinations,and parahallucinations[J]. Psychiatry:Interpersonal and Biological Processes,2010,73(1):
|
[14] |
Chakraborty N,Ornik M,Driggs-Campbell K. Hallucination detection in foundation models for decisionmaking: A flexible definition and review of the state of the art[J]. ACM Computing Surveys,2025,52(7):1-35.
|
[15] |
Sahoo P,Meharia P,Ghosh A,et al. A ComprehensiveSurvey of Hallucination in Large Language,Image,Video and Audio Foundation Models[C]. Findings of the Association for Computational Linguistics:EMNLP 2024. 2024:11709-11724.
|
[16] |
Chen X,Wang C,Xue Y,et al. Unified Hallucination Detection for Multimodal Large Language Models[C]. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024,1: 3235-3252.
|
[17] |
Hicks M T,Humphries J,Slater J. ChatGPT is bullshit[J]. Ethics and Information Technology,2024,26(2):1-10.
|
[18] |
Huang L,Yu W,Ma W,et al. A survey on hallucination in large language models:Principles,taxonomy,challenges,and open questions[J]. ACM Transactions on Information Systems,2025,43(2):1-55.
|
[19] |
Ji Z,Lee N,Frieske R,et al. Survey of hallucination in natural language generation[J]. ACM computing surveys,2023,55(12):1-38.
|
[20] |
Huang L,Yu W,Ma W,et al. A survey on hallucination in large language models:Principles,taxonomy,challenges,and open questions[J]. ACM Transactions on Information Systems,2025,43(2):1-55.
|
[21] |
Chen X,Wang C,Xue Y,et al. Unified Hallucination Detection for Multimodal Large Language Models[C]. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024,1: 3235-3252.
|
[22] |
Guerreiro N M,Alves D M,Waldendorf J,et al. Hallucinations in large multilingual translation models[J]. Transactions of the Association for Computational Linguistics,2023,11:1500-1517.
|
[23] |
Zheng L,Chiang W L, Sheng Y,et al. Judging llmas-a-judge with mt-bench and chatbot arena[J]. Advances in Neural Information Processing Systems,2023,36:46595-46623.
|
[24] |
Adlakha V,Ghader B P,Lu X H,et al. Evaluating correctness and faithfulness of instruction-following models for question answering[J]. Transactions of the Association for Computational Linguistics 2024,12:681-699.
|
[25] |
Dziri N,Milton S,Yu M,et al. On the Origin of Hallucinations in Conversational Models:Is it the Datasets or the Models?[C]. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, 2022:5271-5285.
|
[26] |
Das S,Saha S,Srihari R K. Diving Deep into Modes of Fact Hallucinations in Dialogue Systems[C]. Findings of the Association for Computational Linguistics: EMNLP 2022,2022:684-699.
|
[27] |
Qiu Y,Ziser Y,Korhonen A,et al. Detecting and Mitigating Hallucinations in Multilingual Summarisation[C]. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,2023:8914-8932.
|
[28] |
Yuan S,Faerber M. Evaluating Generative Models for Graph-to-Text Generation[C]. Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing,2023:1256-1264.
|
[29] |
Li Y, Du Y, Zhou K, et al. Evaluating Object Hallucination in Large Vision-Language Models[C]. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,2023:292-305.
|
[30] |
刘泽垣,王鹏江,宋晓斌,等 . 大语言模型的幻觉问题研究综述 [J]. 软件学报,2025,36(3):1152-1185.
|
[31] |
Lebret R,Grangier D,Auli M. Neural Text Generation
from Structured Data with Application to the Biography Domain[C]. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,2016:1203-1213.
|
[32] |
Lee K,Ippolito D,Nystrom A,et al. Deduplicating Training Data Makes Language Models Better[C]. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics,2022,1:8424-8445.
|
[33] |
Rashkin H,Reitter D,Tomar G S,et al. Increasing Faithfulness in Knowledge-Grounded Dialogue with Controllable Features[C]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing,2021,1:704-718.
|
[34] |
Das B C,Amini M H,Wu Y. Security and privacy challenges of large language models:A survey[J]. ACM Computing Surveys,2025,57(6):1-39.
|
[35] |
Lin S,Hilton J,Evans O. TruthfulQA:Measuring How Models Mimic Human Falsehoods[C]. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics,2022,1:3214-3252.
|
[36] |
Kasai J,Sakaguchi K,Le Bras R,et al. Realtime qa:What’s the answer right now?[J]. Advances in neuranformation processing systems,2023,36:49025-49043.
|
[37] |
Paullada A,Raji I D,Bender E M,et al. Data and its (dis) contents:A survey of dataset development and use in machine learning research[J]. Patterns, 2021, 2(11):1-14.
|
[38] |
Gekhman Z,Yona G,Aharoni R,et al. Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?[C]. Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,2024: 7765-7784.
|
[39] |
Bhattacharya P,Prasad V K,Verma A,et al. Demystifying ChatGPT:An in-depth survey of OpenAI’s robust large language models[J]. Archives of Computational Methods in Engineering,2024:1-44.
|
[40] |
Wang C,Sennrich R. On Exposure Bias, Hallucination and Domain Shift in Neural Machine Translation[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020:3544-3552.
|
[41] |
Zhang M,Press O,Merrill W,et al. How Language Model Hallucinations Can Snowball[C]. International Conference on Machine Learning,2024: 59670-59684.
|
[42] |
Yang Y,Chern E,Qiu X,et al. Alignment for honesty[J]. Advances in Neural Information Processing Systems,2024,37:63565-63598.
|
[43] |
Cotra, Ajeya. Why AI alignment could be hard with modern deep learning [EB/OL]. (2025-09-21)[2025-04-25]. Cold Takes. https://www.cold-takes.com/whyai-alignment-could-be-hard-with-modern-deeplearning/.
|
[44] |
Fan A,Lewis M,Dauphin Y. Hierarchical Neural Story Generation[C]. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,2018,1: 889-898.
|
[45] |
Alves D,Guerreiro N,Alves J,et al. Steering Large Language Models for Machine Translation with Finetuning and In-Context Learning[C]. Findings of the Association for Computational Linguistics:EMNLP 2023,2023: 11127-11148.
|
[46] |
Yang Z,Dai Z,Salakhutdinov R,et al. Breaking the Softmax Bottleneck:A High-Rank RNN LanguageModel[C]. International Conference on Learning Representations,2018:1-18.
|
[47] |
Yuan Y,Wang W,Guo Q,et al. Does chatgpt know that it does not know? evaluating the black-box calibration of chatgpt[C]. Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024),2024:5191-5201.
|
[48] |
Tihanyi N, Bisztray T, Ferrag M A, et al. How secure is AI-generated code: a large-scale comparison of large language models[J]. Empirical Software Engineering, 2025, 30(2): 1-42.
|
[49] |
全会 . 冲击·融合·协同:ChatGPT 对传媒业的影响刍议 [J]. 中国广播电视学刊,2023,(09):17-21.
|
[50] |
Nicola J. AI hallucinations can’t be stopped—but these techniques can limit their damage[J].Nature. 2025,637(8047):778-780.
|
[51] |
Katzenbach C,Pentzold C,Otero P V. Smoothing out smart tech’s rough edges: Imperfect automation and the human fix[J]. Human-Machine Communication,2024,7:23-44.
|
[52] |
郭全中,苏刘润薇,彭子滔 . 2023—2024 年传媒业大模型应用报告 [J]. 中国传媒科技,2025,(1):6-10.
|
[53] |
李子甜 . 工具性收益与系统性风险:新闻从业者的人工智能新闻技术认知 [J]. 新闻大学,2022(11):29-42+117.
|
[54] |
Lee M. A mathematical investigation of hallucination and creativity in GPT models[J]. Mathematics,2023,11(10):2320.
|
[55] |
Huang L,Yu W,Ma W,et al. A survey on hallucination in large language models:Principles,taxonomy,challenges,and open questions[J]. ACM Transactions on Information Systems,2025,43(2):1-55.
|